更多>>精华博文推荐
更多>>人气最旺专家

无名鬼

领域:齐鲁热线

介绍:专题四20世纪以来中国重大思想理论成果第一课孙中山的三民主义1901年《辛丑条约》签订1885年中法谅山和平谈判1895年《马关条约》签订孙中山17岁时的照片革命时期的孙中山摄于1900年1915年孙中山与宋庆龄于日本东京结婚一、孙中山首倡三民主义1、背景2、同盟会的成立及《民报》3、三民主义的内容及认识因为我汉人有政权才是有国,假如政权被不同族的人所把持,那就虽是有国,却已经不是我汉人的国了。...

谢京明

领域:中国前沿资讯网

介绍:起舞弄清影,何似在人间! 转朱阁,低绮户,照无眠。利来娱乐帐户,利来娱乐帐户,利来娱乐帐户,利来娱乐帐户,利来娱乐帐户,利来娱乐帐户

利来国际网站
本站新公告利来娱乐帐户,利来娱乐帐户,利来娱乐帐户,利来娱乐帐户,利来娱乐帐户,利来娱乐帐户
si5 | 2019-01-24 | 阅读(578) | 评论(756)
目前全世界有13亿人生活在绝对的贫困线下。【阅读全文】
利来娱乐帐户,利来娱乐帐户,利来娱乐帐户,利来娱乐帐户,利来娱乐帐户,利来娱乐帐户
zko | 2019-01-24 | 阅读(368) | 评论(821)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
brb | 2019-01-24 | 阅读(357) | 评论(599)
”——孙中山在《民报》创刊周年大会的演说“欧美为甚不能解决社会问题?因为没有解决土地问题。【阅读全文】
gwl | 2019-01-24 | 阅读(118) | 评论(211)
PAGE考点44两点间的距离公式要点阐述要点阐述两点间的距离公式两点坐标P1(x1,y1),P2(x2,y2)距离公式|P1P2|=特例若O(0,0),P(x,y),则|OP|=典型例题典型例题【例】某地东西有一条河,南北有一条路,A村在路西3千米、河北岸4千米处;B村在路东2千米、河北岸eq\r(3)千米处.两村拟在河边建一座水力发电站,要求发电站到两村距离相等,问:发电站建在何处?到两村的距离为多远?【解题技巧】两点间的距离公式可用来解决一些有关距离的问题,根据题目条件直接套用公式即可,要注意公式的变形应用,公式中两点的位置没有先后之分.小试牛刀小试牛刀1.已知M(2,1),N(-1,5),则|MN|等于(  )A.5B.eq\r(37)C.eq\r(13)D.4【答案】A【解析】|MN|=eq\r(2+12+1-52)=5.【思想方法】坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离.反过来,已知两点间的距离也可以根据条件求其中一个点的坐标.2.已知点A(-2,-1),B(a,3),且|AB|=5,则a的值为(  )A.1B.-5C.1或-5D.-1或5【答案】C【解析】由|AB|==5,可知(a+2)2=9.∴a=1或-5.3.一条平行于轴的线段的长是5,它的一个端点是,则它的另一个端点的坐标是(  )A.(–3,1)或(7,1)B.(2,–3)或(2,7)C.(–3,1)或(5,1)D.(2,–3)或(2,5)【答案】A【解析】设B(a,1),则,或7.4.光线从点A(-3,5)射到x轴上,经反射后经过点B(2,10),则光线从A到B的距离是(  )A.5eq\r(2)B.2eq\r(5)C.5eq\r(10)D.10eq\r(5)【答案】C【规律方法】(1)两点间的距离公式与两点的先后顺序无关,利用此公式可以将有关的几何问题转化成代数问题进行研究.(2)当点,在直线上时,=.5.若点在轴上,点在轴上,线段的中点的坐标为(3,4),则的长度为(  )A.10B.5C.8D.6【答案】A6.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|ABA.eq\f(\r(89),5)B.eq\f(17,5)C.eq\f(13,5)D.eq\f(11,5)【答案】C【解析】直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0,过定点Beq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(2,5))),由两点间的距离公式,得|AB|=eq\f(13,5).考题速递考题速递1.以A(5,5),B(1,4),C(4,1)为顶点的三角形是(  )A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【答案】B【解析】∵|AB|=eq\r(17),|AC|=eq\r(17),|BC|=3eq\r(2),∴三角形为等腰三角形.故选B.2.已知点A(1,2),B(7,10),则以为斜边的直角三角形斜边上的中线长为(  )A.5B.7C.9D.10【答案】A【解析】,∴中线长是5.3.在直线上求点,使点到点的距离为,则点坐标是(  )A.(5,5)B.(–1,1)C.(5,5)或(–1,1)D.(5,5)或(1,–1)【答案】C4.已知,,当取最小值时,求实数的值.【解析】由两点间的距离公式得.∴当时,取最小值.数学文化数学文化距离两点间的距离(两点之间线段最短)【阅读全文】
mig | 2019-01-24 | 阅读(665) | 评论(374)
 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂【阅读全文】
4oy | 2019-01-23 | 阅读(218) | 评论(341)
明确了办理业务时所接触到的技术协议、批复自采、自采、框架协议、买卖合同、仓储合同、立项反馈、单子等等其中的不同之处及所需要找的不同人员。【阅读全文】
d5n | 2019-01-23 | 阅读(718) | 评论(334)
不主动删除侵权文档,并不是因为红旗条例,我们不主动删除侵权文档的理由有以下六点:1、绝大部分作者对本网站持宽容、理解、容忍、友好态度。【阅读全文】
yyh | 2019-01-23 | 阅读(424) | 评论(655)
3.党建工作开展方式待进一步创新;认真反思存在的问题,主要原因有三:1.思想重视程度不到位2.统筹谋划能力不足3.督导问责还不到位;目录;1.加强学习,提高个人能力和水平2.团结协作,推动工作齐头并进3.创新方式,提升党建工作效果【阅读全文】
利来娱乐帐户,利来娱乐帐户,利来娱乐帐户,利来娱乐帐户,利来娱乐帐户,利来娱乐帐户
do3 | 2019-01-23 | 阅读(863) | 评论(627)
通过广泛征求意见,和广大党员群众交心谈心,知道了自己存在的主要问题和不足是,其一在理想、信念方面存在缺乏责任意识和政治敏锐性,在日常工作中,实践“三个代表”重要思想的自觉性不强。【阅读全文】
vwq | 2019-01-22 | 阅读(528) | 评论(862)
全名粤语近音“圈凭踏”,有着飞黄腾达的寓意。【阅读全文】
zuu | 2019-01-22 | 阅读(598) | 评论(895)
三、工作要求各工程指挥部和铁路公司要按照“五定、三统一、一查处”的检查制度认真开展“十严禁”检查处理工作。【阅读全文】
4sm | 2019-01-22 | 阅读(700) | 评论(417)
首先介绍了BOT的概念和形式演变,阐述了高校后勤BOT项目的特点,总结了BOT模式应用于高校实例的社会和经济效益。【阅读全文】
aga | 2019-01-22 | 阅读(896) | 评论(391)
绿色圃中学资源网曹操带领儿子和官员去看人家送给他的一头大象。【阅读全文】
3ox | 2019-01-21 | 阅读(895) | 评论(982)
S-2(S2-、H2S)、0(S↓)、+4S(SO2、SO32-、HSO32-、+6(SO42-)。【阅读全文】
q3i | 2019-01-21 | 阅读(646) | 评论(77)
请问:张三应交纳的个人所得税是多少?他的应税所得额为25000-3500=21500元不超1500部分1500×3%=45(元)超过1500元至4500元部分3000×10%=300(元)超过4500元至9000元4500×20%=900(元)超过9000元至35000元12500×25%=3125(元)     45+300+900+3125=4370(元)应纳税:【知识拓展】认识税收在国民经济中的作用(1)税收是组织财政收入的基本形式(主要来源)。【阅读全文】
共5页

友情链接,当前时间:2019-01-24

w66利来娱乐公司 利来国际最给力的老牌 利来国际备用 利来娱乐网 利来娱乐网
利来娱乐国际最给利老牌网站是什么 利来国际真人娱乐 利来国际官方网站 利莱国际w66 利来国际w66平台
利来娱乐网址 利来国际官网w66 利来娱乐在线平台 环亚娱乐真人游戏 利来国际www.w66com
利来国际最老牌手机板 利来国际最老牌 w66利来娱乐 w66.com利来国际 利来国际网址
海伦市| 山东| 双城市| 巴青县| 凤阳县| 台东市| 嘉禾县| 加查县| 哈尔滨市| 长垣县| 宁都县| 常山县| 合水县| 阳新县| 陕西省| 偏关县| 元江| 武邑县| 昌吉市| 张家界市| 东港市| 岗巴县| 体育| 宽甸| 广昌县| 历史| 武城县| 任丘市| 巩留县| 岗巴县| 晋江市| 洛阳市| 社会| 霸州市| 沽源县| 佛山市| 温州市| 屏山县| 萨嘎县| 榆树市| 米泉市| http://m.20142011.cn http://m.44875270.cn http://m.95176006.cn http://m.46930317.cn http://m.71132948.cn http://m.17346912.cn